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ABSTRACT

A framework for deriving high-level scene attributes from
low-level image features is presented. The assignment of
the attributes to images is done by a hierarchical classifica-
tion of the low level features, which capture colour, texture
and spatial information. A system for image classification
is implemented, which aids in the evaluation of the different
methods available. A detailed analysis of the best features
for different classification tasks is presented. Classification
and retrieval results on the ImagEVAL image dataset are
provided.

Categories and Subject Descriptors

1.4.7 Image Processing and Computer Vision|: Fea-
ture Measurement; 1.5.4 [Pattern recognition]: Applica-
tions—Computer Vision

General Terms
Experimentation, Performance

1. INTRODUCTION

This paper presents our image classification system entered
into Task 5 of the ImagEVAL 2006 campaign. It concerns
the extraction of image semantic types (e.g. landscape pho-
tograph, clip art) from low-level image features.

A variety of applications for image classification and feature
extraction can be found in Content Based Image Retrieval
(CBIR). An application especially suited to the classifica-
tion under consideration here is the automatic colour cor-
rection of consumer photos during film development [5, 7].
Another application could be the automatic classification of
images in large electronic-form art collections, such as those
maintained by museums or image archives of print media /
television. Generally speaking, such a classification is useful
everywhere where a manual classification or sorting process
is infeasible because of the number of images under consid-
eration.
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There exists much work on this sort of image classification
[1, 3, 7, 8, 9, 11], however papers often concentrate on a
small subset of the classes given or even just a binary classi-
fication. Each evaluation is usually done on a different set of
images, making it difficult to judge the effectiveness of the
methods. This paper contributes by analysing the effective-
ness of a large number of features for the tasks listed above.
An effective feature combination method and hierarchical
clustering approach is presented.

Sections 2 and 3 describe the system used to classify the im-
ages for the ImagEVAL campaign, where Section 2 presents
an overview of the features extracted, while Section 3 de-
scribes the classification methods used. Section 4 presents
detailed results of feature selection experiments performed
on the ImagEVAL training data. The classification and re-
trieval results are presented and discussed in Section 5. More
detailed information on the system and features used can be
found in [4].

2. FEATURES

All input images are encoded in the RGB colour space.
Therefore it would be of advantage to work with RGB since
no conversion is needed. The drawback however is that this
space is ill-suited for most classification based on colour.
For example, different illumination will change the perceived
colour. While the human eye will make adjustments to ac-
commodate for this, it is hard to construct a metric for which
an image has the same (pixel) values regardless of lighting
conditions. The luminance information is more important to
our perception than the chroma, a difficult fact to consider
when using a colour-space where luminance is not directly
available, rather being a combination of all three channels.

To capture colour information, histograms are calculated in
several colour spaces. This section shows why the particular
conversions were considered and details on the parameters
chosen. The number of bins per channel is 20.

RGB Histogram. Although the RGB space was expected
to perform worse than other colour spaces for the reasons
mentioned above, there are good reasons for calculating a
feature vector based on this space. An advantage is that
no conversion errors are introduced. The classification of
images into the nature and urban class was also expected to
benefit from this space when considering the green channel
which is expected to show higher values for the nature class.



Ohta Histogram. The Ohta colour space is proposed for
indoor-outdoor classification in [7]. The first channel of this
space captures brightness information as it is the sum of the
three channels of RGB.

CIELUV /CIELAB Histogram. An advantage of both the
CIELUV and the CIELAB colour spaces is that the Eu-
clidean distance between two sets of colour coordinates ap-
proximates the human perception of colour difference. The
luminance information is directly available in the first chan-
nel.

srgb Histogram. The calculation of the normalized RGB
colour space’ is performed as proposed in [1]. The “intensity
free” image is computed by dividing each channel of RGB by
the intensity at each pixel. The calculation of the intensities
is as follows:

I = (299 % R + 587 G + 114 « B) /1000 (1)

HSV. The HSV colour space, representing hue, saturation
and colour value (brightness) has the shape of a hexagonal
cone. The angle is given by the hue, the distance from the
centre of the cone by the saturation and the vertical position
by the value. This colour space is used for a part of the
colour statistics shown in the following list:

e [lluminant: this value indicates the colour of the light
source. It is calculated in two versions, through the
“Grey-world algorithm” and the “White patch algo-
rithm”. The former is calculated by the mean of the
three colour channels, which is assumed to be “grey”
(multiplied by 2 to get white), the latter is calculated
by assuming that a white patch is always visible in
an image, therefore taking the maximum value of each
channel.

e Unique colours: this value is calculated by transfor-
mation into the HSV-space and counting the unique
values in the Hue channel.

e Histogram sparseness: a histogram is calculated and
bins containing counts higher than a fixed cut-off value
counted.

e Pixel saturation: this is calculated as a ratio between
the number of highly saturated and unsaturated pixels
in the HSV colour space [1].

e Variance in and between each channel of the RGB

space.

The following texture features are calculated:

IThis is not the sSRGB as defined by IEC 61966-2-1 “Default
RGB Colour Space”.

Edge direction. This feature is used to compare the fre-
quency of occurrence of edge directions. As with colour, a
histogram is used to discretise the values. For a greyscale
image the gradient is calculated in two directions by convo-
lution with the horizontal and vertical Prewitt kernels. The
next step is the calculation of the magnitude and direction
at each pixel x:
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where f;, and f, are the horizontal and vertical edges.

Edge direction coherence vector. The calculation of the
edge direction coherence vector is accomplished by a mor-
phological closing of the magnitude image with a line seg-
ment followed by a morphological opening with a small disk.
Thereby the dominating structures are enforced while degen-
erate “edges” — isolated pixels — are removed. As above, a
greyscale image is used for the input. In both cases the result
is a histogram of the direction image multiplied (masked)
by the thresholded magnitude image. The 37 bins repre-
sent 5 degree intervals from —90° to 90°. The number of
edge pixels found is stored in an extra bin of the histogram.
Normalization with the image size is also performed.

Edge Statistics. This feature is used to determine whether
the edges in the image result from intensity changes, as is the
case with natural images, or from changes in hue, a method
employed in paintings [1]. The intensity edges are found as
above. The colour edges are found by first transforming the
image into the srgb space, resulting in normalised RGB com-
ponents. The colour edges of the resulting “intensity-free”
image are then determined by applying the edge detector to
the three colour channels and fusing the results by taking
the maximum. The feature extracted is the fraction of pure
intensity-edge pixels.

Wavelets. The Haar transform [5] is used to decompose an
image into frequency bands. To extract an image feature
this transform is applied to the L component of a CIELUV
image. The square root of the second order moment of
wavelet coefficients in the three high-frequency bands is com-
puted. This image feature captures variations in different
directions. In the implementation of the system 4 levels are
computed. This yields a feature vector of length 12.

Gabor filter. The Gabor filter is a quadrature filter. It
selects a certain wavelength range (bandwidth) around the
centre wavelength using the Gaussian function. This is simi-
lar to using the windowed Fourier transform with a Gaussian
window function. The feature vector is constructed by cal-
culating the mean and standard deviation of the magnitude
of the transform coefficients at several scales and orienta-
tions [6, 10]. This means that the fast Fourier transform
(FFT) is applied to an image and then the Gabor filter,
specific to this scale and orientation, is applied. Now the
inverse of the FFT is taken and the mean and standard de-



indoor: error for rgbHist

white: 0.244 black: 0.365 combined: 0.183

Figure 1: Using image tessellation to capture Spatial
Information: Indoor-Outdoor

viation calculated. For the system this filter is applied at
6 orientations and at 4 scales. Two values are collected at
each point; therefore the feature vector has the length 48.

3. CLASSIFICATION

For implementation of the system Matlab Version 6.5 was
used. The library PRTools® Version 4.0.14 [2] is used to
construct the classifier. The results reported in the next
section were obtained with the k-NN classifier, where the
number of neighbours is set to 5. Other tested classifiers are
not used due to their complexity, sharply increasing compu-
tation time (neural net, Mixture of Gaussians), or because
of their lower performance, probably because of the inabil-
ity to model complex distributions (Linear and Quadratic
Bayes and Parzen classifier). The Bagging classifier, based
on k-NN and the Decision trees proved to be competitive
but not as robust as the k-NN classifier.

3.1 Spatial Information

To capture spatial information, each image is divided into
16 sub-images. This 4 x 4 image tessellation is of benefit be-
cause image regions can be weighted according to their im-
portance. For each sub-block a feature vector is calculated
separately. A simple concatenation of these would increase
the dimensionality by a factor of 16. To keep the classifica-
tion simpler the following method is used: a classifier is built
for each sub-block and a combining classifier, described in
the next section, effectively weights the results of these.

A drawback of this approach is that only simple concepts
can be captured through this method (e.g. blue sky at the
top for outdoor images). Complex concepts, such as XOR
cannot be solved. As an example for successful weighting,
Figure 1 shows the error rate for indoor-outdoor classifica-
tion based on the RGB histogram, averaged over the sub-
blocks of 1000 test images when trained with 2000 images.
In Figure 1, white represents the best error rate of 0.244%
and black the worst with 0.365%. As can be observed the
classification is better for the blocks in the upper part of
the images, probably capturing the “sky” information. Also

2Pattern Recognition Tools:
prtools.org/

available at http://wuw.

the combination of the results of the individual sub-blocks
brings an improvement to an overall error rate of 0.183%.

3.2 Combining Features

The method used for incorporating spatial information is
extended for several features straightforwardly. For each
sub-block and for each feature a classifier is trained using
a subset of the data available. Depending on the number
of features used, between 16 (for one feature) and 64 (for 4
features) classifiers have to be trained.

The training of the sub-blocks with a subset of the data is
done to introduce “unseen” data for the combining classifier.
This avoids overfitting the combining classifier.

The output when applying a classifier is a value signifying
the confidence with which each image belongs to the class
under consideration. The trained classifiers are applied to
all of the training data independently.

In the next step their outputs are concatenated to a feature
vector and the combining classifier trained. The number of
classifiers for each sub-problem is therefore the number of
blocks times the number of features plus one.

Experiments were also carried out with the possibilities for
combining classifiers provided by PRTools. These are: Prod-
uct, Mean, Median, Maximum, Minimum and Voting com-
biner. However classification with these combiners gener-
ally shows an error rate higher than that achieved with the
scheme above.

3.3 Hierarchical Classification

A hierarchical classification similar to that described in [§]
is implemented. The classifier for the whole problem is or-
ganised in the hierarchy shown in Figure 2.

Colour - Black White

| Indeor - Outdoor

Colour - Manually coloured

Colour Photo - Art/Painting Day - Night
Indoor - Outdoor

Day - Night

| Urban - Nature

| Urban - Nature

Urban - Nature

Urban - Nature

Figure 2: Hierarchy of Classifiers

At each node the training or application of a classifier takes
place. Only the appropriate sub-sample of images, as deter-
mined by the node, is passed to the children nodes. At leaf
nodes training or classification stops. This is a divide and-
conquer strategy with several advantages. One advantage,
compared to a classification of all attributes at once, is re-
duced complexity through reduction to two-class problems.
Also there is no need for a third class of images belonging
to none of the classes under consideration.



Each node can be configured individually. The system cur-
rently has settings for: enabling/ disabling classification,
list of low-level features selected, prior probabilities, chosen
combining scheme (classifier, voting scheme) and the list of
children, if any. This structure could be extended for param-
eters specifying the type of classifier (k-NN, decision trees
etc.) and parameters to use. During the training phase the
obtained classifiers are also stored in this structure.

This scheme also helps to keep the feature-vector used for
training and during classification as small as possible, for
example for day-night classification only one feature is used.

The logic of the problem-domain is easy to implement through
the setting of the “children” list. This allows for a relatively
easy extension to other attributes. Through this integration
of the logic, inherent in the targets, a plausibility-check is
not needed for the class labels (e.g. a setting of two con-
tradicting labels does not lead to an error). The hierarchy
shown in Figure 2 was obtained through analysis of the prob-
lem domain.

When applying the classifier, classification stops at the leaf
nodes. This leads to an increase of speed and could be fur-
ther exploited to only extract the needed features for each
image.

Each of the nodes can be analysed separately. Figures such
as the one shown in Figure 1 are available for each attribute
and feature pair and help to interpret performance at each
node.

4. FEATURE SELECTION

We compare the capability of each of the features described
in Section 2 to successfully perform one of the required bi-
nary classifications. For the comparison of features and also
as a means to test their variance, box plots were created
with a (smaller) sample of 700 training and 200 test images.
Figure 3 shows these box plots. On the z-azis the following
features are shown: histograms in five colour spaces, colour
statistics, edge statistics, edge direction histogram and co-
herence vector, wavelets, Gabor filter and the combination
of all features. On the y-azis the error-rate can be read off.
Each box is limited by the lower quartile (25% of the data)
and the upper quartile (75%). The median is indicated by
a horizontal line. Whiskers and crosses show the extent of
remaining data. These results are used to manually select
the best features for each sub-problem.

To measure accuracy and retrieval effectiveness, the follow-
ing statistics are collected for each classification task:

tn true negatives: the instances correctly classified as neg-
ative;

tp true positives: the instances correctly classified as posi-
tive;

fp false positives: negative instances wrongly classified as
positive;

fn false negatives: positive instances misclassified as nega-
tive.

These four values are summarised in a confusion matrix.
This matrix has the following form:

a b | <~ classified as
tn fp|a
fn tp|Db

As can be observed the sums of the rows of each class show
how many instances belong to either class, whereas the sums
of the columns show how many instances are classified to
belong to each class.

Each of the following sub-sections considers one of the binary
classification problems to be solved. Below each heading, the
best features for the task (features chosen) as well as the
statistics on the correctly and incorrectly classified images.
Note that the total number of images to be classified can
be smaller for the classification nodes lower in the hierarchy.
The baseline is calculated by division of the size of the bigger
class by the total number of instances. This is the best
result possible when guessing the class, without any feature
available. A discussion of the features follows.

4.1 Black and White

Features Chosen: Lab, cStat
Correctly Classified Instances: 990 99.0 %
Incorrectly Classified Instances: 10 1.0 %
Total Number of Instances: 1000
Baseline: 79.7%

Confusion Matrix

other types black white | <— classified as
793 4 | other types
6 197 | black white

The features used for the colour - black and white classifier
are the colour statistics and the CIELAB histogram. The
results achieved are very good, supporting the decision to
choose these features. An interesting result shown in the
box plot (Figure 3a) is that pure texture features perform
significantly worse than colour features. While this result is
not surprising it does show that the content (i.e. objects,
image composition) of the images of the two classes is quite
similar.

An analysis of the CIELAB histograms shows that this colour
space is well suited for this problem because the chrominance
is available separately. Colour images show a Gauss-like dis-
tribution in these two channels while black and white or
greyscale images show a single spike around the value repre-
senting zero or achromaticity and a very small percentage of
other chrominance values. The separation of the classes in
the CIELAB colour space is not perfect due to the inclusion
of sepia images into the black and white class. The box plot
shows that the RGB space, where chrominance as well as
luminance is a product of the three channels, is not suited
for this classification.

The colour statistics show good results because in black and
white images there is nearly no variance between the three
channels in the RGB colour space whereas colour images
have a high variance. Again, sepia images are the reason for
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a small error. Both features show slightly better results for
the four sub-blocks in the centre, probably because some im-
ages contain a border of a different colour/luminance. The
combination of all features available did not yield a signifi-
cantly better result than each of the two features chosen.

Images of the colour class misclassified as black and white
have a colour distribution similar to the sepia images or are
very bright with little contrast. Nearly all misclassified black
and white images are sepia images reported as manually
coloured black and white.

4.2 Manually Coloured Black and White

Features Chosen: Lab
Correctly Classified Instances: 961 96.1 %
Incorrectly Classified Instances: 39 39%
Total Number of Instances: 1000
Baseline: 93.4%

Confusion Matrix

other types Coloured BW | <— classified as
918 16 | other types
23 43 | coloured BW

For the classification of images into the classes colour and
manually coloured black and white images the CIELAB his-
togram is used. The results achieved are good, but com-
pared to the classification in the previous section, the recall
of the smaller class (manually coloured black and white)
is not quite as satisfactory. This indicates that the unequal
distribution of instances is used to bias the classifier towards
the larger class.

The box plot (Figure 3b) shows that all features available
perform nearly equally well on this classification task and
that a combination of all features does not yield a signifi-
cantly better result. The CIELUV as well as the CIELAB
colour space seems to be best suited. An analysis of the
CIELAB histograms shows that the L™ channel has a slightly
different distribution for the two classes under consideration.
While the colour images follow a near Gaussian distribution
in this luminance channel, the distribution for the manu-
ally coloured images has two peaks. The second maximum
represents noticeably higher luminance values than found in
colour images. The third channel of the CIELAB histogram,
representing yellow-blue chrominance also shows a signifi-
cant variation between the two classes. The values for the
manually coloured images show less variance around the zero
value, representing achromaticity. The performance of the
sub-block classifiers shows very little variance with respect
to error-rate. As in the classification of black and white
images, the texture features perform marginally worse than
the colour features.

Misclassified images of the manually coloured class are as-
signed to the art or colour classes. The attribute “manually
coloured image” is wrongly assigned to images of the colour
class when an image contains uncommon colours, as with
outdoor images with a lot of fog, but also to an aerial im-
age. As mentioned above sepia images are difficult to classify
into this class or the black and white class.

43 Art

Features Chosen: srgb, wav
Correctly Classified Instances: 949 94.9 %
Incorrectly Classified Instances: 51 51 %
Total Number of Instances: 1000
Baseline: 91.4%

Confusion Matrix

other types art | <— classified as
900 14 | other types
37 49 | art

The features selected for the classification of images into the
classes photographic image - artistic reproduction/ paint-
ings are the sSRGB histogram and the wavelet filter. Similar
to the observations made with the classification of images
into the colour - manually coloured classes, the box plot
(Figure 3c) does not show a single feature outperforming
the others and the combination of features does not seem
promising. Also the results obtained show a lower recall
rate on the smaller class (paintings).

The CIELAB histogram has slightly higher luminance val-
ues for the “art” class but a higher deviation is found in
the green channel of the sRGB histogram. The distribu-
tion of the histograms in this colour space is generally less
spread out for images belonging to the class of paintings.
The wavelet filter shows higher values for colour images,
this represents texture detail, indicating that paintings are
less structured than photos of (natural) scenes. Both fea-
tures show little variance with regard to the results of the
sub-block classifiers; however slightly better values are ob-
served for the off-centre blocks. This could be a result of the
general layout of paintings, with the subject in the centre
and less detail near the borders.

As mentioned above some manually coloured black and white
images are wrongly assigned to this class. Furthermore
colour images of richly decorated indoor scenes (palaces,
gold plating) are considered as art, as are some outdoor
scenes. Difficult to interpret is the reason why many art im-
ages are misclassified as colour photos. These images mostly
have a realistic colour layout and a higher level of detail.

4.4 Colour Photo

Correctly Classified Instances: 933 93.3 %
Incorrectly Classified Instances: 67 6.7%
Total Number of Instances: 1000
Baseline: 64.6%

Confusion Matrix

other types colour photo | <— classified as
305 49 | other types
18 628 | colour photo

This table is a summary of results obtained so far in that it
shows the error in classification for colour photos versus the
other types in question. Through the hierarchic classifica-
tion, the classifications performed until this point discrimi-
nate black and white images, manually coloured images and
paintings from a general “colour” class, therefore what we
are left with here are photographic colour images. Not con-



sidered, but also not part of the training sample, are black
and white artistic reproductions. For the further classifi-
cation only colour photos and black and white photos are
considered.

4.5 Outdoor - Indoor

Features Chosen: rgb, Lab, edgeC, wav

Correctly Classified Instances: 693 83.5 %
Incorrectly Classified Instances: 137 16.5 %
Total Number of Instances: 830
Baseline: 63.5%

Confusion Matrix

outdoor indoor | <— classified as
456 69 | outdoor
68 237 | indoor

For the classification of images into the indoor or outdoor
class the following features are selected: RGB and CIELAB

histograms, coherent edge direction histogram and the wavelet

filters. The result obtained in the classification process is
not as good as those covered so far. However the results
obtained by other authors (82% to 93%) are comparable
because their training and test sets are often smaller and
ambiguous images are eliminated beforehand. An interpre-
tation of the box plot (Figure 3d) is that generally colour
features seem to perform better than texture features, what
is striking is that the combination of all features yields a
much better result than any single feature. Also the Gabor
filter performs as well as the colour features.

An analysis of the RGB and CIELAB histograms shows that
indoor images have slightly less luminance and (therefore)
less highly saturated pixel values. Also the sub-block clas-
sifiers for these features perform better for the upper half
of the images, this can be attributed to the presence or ab-
sence of a sky or alternatively that this area best reflects
lighting conditions. The values obtained through the Ga-
bor filters show higher values for the indoor class, indicat-
ing more structure or highly textured images. For the final
implementation of the system the Gabor filter was dese-
lected because of its high computational costs, however the
wavelet filters, selected instead, show a similar response for
this classification. As with the Gabor filter the result of the
wavelet operation shows higher values for the indoor class.
The coherent edge direction histograms show higher values
for the outdoor class, seemingly contradicting this obser-
vation. Both classes show peaks at the values indicating
horizontal, vertical and diagonal structures —90, —45, 0, 45
and 90 degrees. This effect is somewhat more pronounced
for the indoor class.

The results obtained in combining the said features are sim-
ilar to the combination of all features, as indicated by the
feature “comb” in the box plot. It has been indicated in sev-
eral papers that a combination of features has most effect
when combining features of the “colour” group with those
of the “texture” group.

The reason for indoor images to be classified as outdoor
often seems to be lighting conditions caused by the presence
of windows or doors. Also a strong presence of green or,

in the case of black and white images, a bright background
seems to bias the images into this class. The outdoor images
classified as indoor either show very high detail or cluttering
of the image or depict outdoor scenes with lighting common
to indoor images, e.g. during dawn and dusk.

4.6 Night - Day

Features Chosen: Luv
Correctly Classified Instances: 435  96.5 %
Incorrectly Classified Instances: 16 35 %
Total Number of Instances: 451
Baseline: 86.8%

Confusion Matrix

night day | <— classified as
36 6 | night
10 399 | day

The classification of images into the day - night classes is
achieved using the CIELUV histograms. As can be observed
in the box plot (Figure 3e), colour features perform better
than texture features and the combination does not bring
an improvement over using the CIELUV colour space. The
accuracy achieved is acceptable and the recall rates are good
for both classes. The means of the CIELUV histograms
for this classification problem show a distinct deviation in
the luminance channel. As can be expected photos during
daylight are much brighter than night shots. Interestingly
enough, the chrominance values of the night class are higher
than those of the day class. This might be a conversion
error due to the little luminance and therefore little hue
information available or alternatively the presence of light
emitting objects. The results for the sub-blocks are slightly
better for the upper half of the images.

The reason for misclassification of day scenes is often a very
dark sky and in one instance an underwater image with black
background. Night scenes misclassified as day were taken
during dusk, ambiguous even to a human observer. Three
images show city scenes with man-made lighting.

4.7 Urban - Nature

Features Chosen: rgb, edgeC, wav

Correctly Classified Instances: 393 871 %
Incorrectly Classified Instances: 58 12.9 %
Total Number of Instances: 451
Baseline: 63.2%

Confusion Matrix

urban nature | <— classified as
243 22 | urban
36 150 | nature

For the classification problem nature - urban the following
low-level features where selected: RGB histogram, coher-
ent edge direction histogram and wavelet filters. As with
the indoor - outdoor classification this seems to be a harder
problem. The 87% hit-rate achieved lies close to the re-
sults reported on the problem by other papers The box plot
(Figure 3f) shows that colour features as well as texture fea-
tures are suited for the classification, also the combination



of features promises an improvement.

The analysis of the RGB histograms does not yield explicit
evidence other than that all channels have higher values in
the nature class. The distribution in the CIELAB colour
space confirms a higher luminance for nature images. This
can be attributed to a different illumination, rather counter-
intuitive is that there is no abundance of green in nature
images. The histograms of the coherent edge direction sug-
gest more ordered structures in the urban class. The peaks
and valleys are more pronounced for this class. While both
classes have a maximum at 0°, representing horizontal de-
tail, the urban class has maxima at -90 and 90 degrees, rep-
resenting vertical detail, while the nature class has a near
equally spaced distribution. This feature therefore draws on
the assumption that nature images have smaller, chaotic
structures than urban images. Both the Gabor and the
wavelet filters show higher values for the urban class at all
scales and orientations, confirming this observation.

The sub-blocks in the centre have higher accuracy for the
RGB and the wavelet feature. For the coherent edge direc-
tion histogram the best results are achieved in the lower part
of the images.

Natural images classified as urban show a very highly struc-
tured composition. This is caused by trees, rocks or land-
scape formations e.g. canyons. Some cases also show man
made structures in the foreground, e.g. castles or walls.
Abundance of sky or green plants as well as the presence of
lakes and rivers in urban scenes seems to be the main reason
for the wrong assignment of the attribute nature.

S. RESULTS

This section presents the overall classification and retrieval
results using the proposed system with the features selected
in the previous section.

5.1 Classification Results

For the evaluation of the system a sample size of 2000 im-
ages is chosen for training and 1000 images are used for
testing. The sample sizes were chosen for the purpose of
faster testing.

Table 1 shows the obtained percentage of correctly classi-
fied images compared to the baseline value for each task
in the classification hierarchy. The features were chosen by
analysis of the box plots (Section 4). Table 2 shows the
percentage of correctly classified images achieved with the
features under consideration for each of the classes.

task features % correct | baseline
BW Lab colStat 99.0% 79.7%
Man.col. | Lab 96.1% 93.4%
Art srgb wav 94.9% 91.4%
Photo all of above 93.3% 64.6%
Indoor rgb Lab edgeC wav | 83.5% 63.5%
Night Luv 96.5% 86.8%
Nature | rgb edgeC wav 87.1% 63.2%
Total 71.0% 20.0%

Table 1: Summary of Results

group | ground truth
autumn colour Photo, outdoor, day, nature
night colour Photo, outdoor, night, urban

kitchen colour Photo, indoor
paintings | art
ny_city colour Photo, outdoor, day, urban

Table 3: Selected groups from the Corel Image
Database

Black and white images have little variance between the
channels, a small error is made though the misclassification
of sepia images. Manually coloured images have a colour
distribution that is uncommon in natural images. The clas-
sifier for the attribute art draws on the observation that
natural images have more structure and a more even colour
distribution than images of this class. Images that are not
specified as belonging to any of the classes mentioned thus
far, are classified as colour photo. The error for assignment
of the attribute night can be traced to ambiguous images,
taken at dusk, with dark sky or underwater. Classification
of images into nature and urban classes is based on strong
vertical and horizontal structures in urban scenes and on
colour differences, generally nature images have higher val-
ues in all three channels of the RGB histograms.

An accuracy of 71% is achieved on the whole problem, i.e.
assigning up to 4 attributes to an image. The images consid-
ered to be incorrectly classified have one or more wrongly
assigned attributes. This value is not simply the sum of
errors reported in the previous sections. The baseline er-
ror, the assignment of the class with the highest probability,
would yield 20% hit-rate with this image database; however
this would also imply a recall rate of 0% for all other classes
in question because all images would be assigned to the same
class. The percentage of correctly classified images on the
3474 images not used for training is 72.4%. This suggests
that the classifier generalises well and can be expected to
perform comparably on similar data.

To compare the results on a different dataset a test run was
made on a part of the Corel image database used in [5] and
[11]. A sample of 500 images was selected; Table 3 shows the
chosen image groups and the attributes manually assigned
to them. Each group contains 100 images.

The classifier was trained on 400 images (using a random
draw) and tested on the remaining 100. The percentage
of correctly classified images is 80%. The discrepancy be-
tween the results can be explained by the different domain of
the ImagEVAL images compared to the 500 images selected
from the Corel image database.

5.2 Retrieval Results

The final version of ImagEVAL Task 5 was posed as an
image retrieval problem, requiring that each image be as-
signed a confidence that it satisfies a query. We calculate
one global confidence measure per image simply by multi-
plying together the confidences of the classifications in all of
the nodes of the classification hierarchy which participate in
the classification of the image.



Class rgb ohta luv lab srgb colour-stats
art 91.9 92.9 91.5 91.2 *93.1 91.3
blackWhite 87.4 97.6 95.1 98.0 93.5 *98.6
bw_Col 93.6 95.1 94.7 *95.7 94.7 92.5
day 95.9 93.6 *96.2 91.6 91.8 91.1
indoor 74.2 75.7 72.4 *TT.T 74.8 67.1
nature *80.9 78.4 78.6 77.8 71.3 61.9
Class edge-stats edges edges C. wavelet gabor combined
art 91.6 *91.8 *91.8 91.2 *91.8 93.3
blackWhite *89.3 76.1 74.4 73.7 76.9 98.1
bw_Col 93.0 93.0 92.9 92.5 *93.2 95.6
day 85.9 87.3 86.1 *88.6 85.9 96.8
indoor 63.4 65.8 66.9 67.6 *75.4 83.5
nature 57.6 78.8 77.0 75.4 *84.2 88.1

Table 2: Comparison of Features - the percentage of correctly classified images is given; top: colour his-
tograms, bottom: texture features. The best single feature for a class is in bold, an asterisk marks best result

of each row.

Two runs were submitted, with the difference being in the
number of images used to train the classifiers for each sub-
block of the image tesselation and the number of images
used to train the combined classifier. For run PRIP01, 5000
images were used for training the sub-block classifiers and
474 for training the combined classifiers. For run PRIP02,
4000 images were used for training the sub-block classifiers
and 1474 for training the combined classifiers.

The Mean Average Precision (MAP) for run PRIPO1 was
0.3676 and for run PRIP02 was 0.3141. This shows that
having more training data for the sub-block classifiers is im-
portant. This is particularly visible for query 1: “Art”,
which shows the most significant difference between runs
(MAP of 0.4949 for run PRIPO01, 0.0748 for run PRIP02).

6. CONCLUSION

A detailed analysis of a number of features commonly used
for image classification is presented. The result of image
classification is used to evaluate and compare the discrimi-
nation power of several features on the given problems. Sec-
ondly, conclusions about the reasons why particular features
are suited to a problem are drawn. This is done through an
analysis of results and variables available at sub-stages dur-
ing the training and testing phases.

The best features for each binary classification are then used
in a classification hierarchy to assign a set of attributes to an
image. Good classification results are obtained, with 72.4%
of the 3474 images used as a test set being assigned a full
set of correct attributes. The poorer image retrieval results
are possibly due to a poorly defined confidence measure in
the overall classification. It could also be linked to the small
amount of training data available for our classification-based
approach. The fact that the baseline results are high for
some classes (over 90% for the art and manually coloured
classes, see Table 1) demonstrates the small number of sam-
ples of these classes in the training data. This is also demon-
strated by the large difference in retrieval results for the art
class (query 1) when the training set is increased from 4000
to 5000 images.

The hierarchical classification makes use of knowledge about
the problem-domain. The attributes to be assigned to the
images are mutually exclusive and cover a wide spectrum of
input images.

The ambiguity of natural language, where, for example, “na-
ture” and “urban” is not explicitly defined and leads to prob-
lems in classification of images that cannot be accurately
described with either word, is an unsolved problem.

An improvement of feature extraction speed would be of
advantage, not only in use of the system with large image
databases, but also to rapidly test other parameter settings
and low-level features.
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